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ABSTRACT 

 The rise of accessible real-world data creates a growing interest in effective 

methods for accurate classification, especially for networks with incomplete information. 

The intelligence community requires an understanding of a network before the team can 

develop a strategy to combat the adversary. These problems are typically time-sensitive; 

however, gathering complete and actionable intelligence is a challenging mission. An 

adversary’s actions are secretive in nature. Crucial information is deliberately concealed. 

Intentionally dubious information creates problematic noise. Therefore, if an observed 

incomplete network can be classified as-is without delay, the network can be properly 

analyzed for a strategy to be devised and acted upon earlier. This thesis considers a 

machine learning technique for classification of incomplete networks. We examine the 

effects of training the model with complete and incomplete information. Observed 

network data and their structural features are classified into technological, social, 

information, and biological categories using supervised learning methods. 
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Executive Summary

Demand for effective methods of analyzing networks has emerged with the growth of acces-
sible data, particularly for incomplete networks. Even as means for data collection advance,
incomplete information remains a reality for numerous reasons. Data can be obscured by
excessive noise. Surveys for information typically contain some non-respondents. In other
cases, simple inaccessibility restricts observation. Also, for illicit groups, we are confronted
with attempts to conceal important elements or their propagation of false information. In
the real-world, it is difficult to determine when the observed network is both accurate and
complete.

In this research, we consider amethod for classification of incomplete networks. We classify
real-world networks into technological, social, information, and biological categories by
their structural features using supervised learning techniques. In contrast to the current
method of training models with only complete information, we examine the effects of
training our classification model with both complete and incomplete network information.
This technique enables our model to learn how to recognize and classify other incomplete
networks.

The representation of incomplete networks at various stages of completeness allows the
machine to examine the nuances of incomplete networks. By allowing the machine to
study incomplete networks, its ability to recognize and classify other incomplete networks
improves drastically. Ourmethod requiresminimal computational effort and can accomplish
an efficient classification. The results strongly confirm the effectiveness of training a
classification model with incomplete network information.

The foundation established in this thesis allows for an enhanced understanding of incom-
plete networks. Opportunities for follow-on research extend to incorporation of this clas-
sification model into practical implementation and exploration of other machine learning
techniques.
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CHAPTER 1:
Introduction

1.1 Motivation
Numerous real-world problems and systems can be represented by networks. Varying from
social relationships to biochemistry, networks exist in many different forms. Personal or
organizational interactions are captured in network representations (Barabasi 2016, sec.1.5).
Communication devices, connected through wired or wireless means, can be mapped by
technological networks (Barabasi 2016, sec.1.5). Networks can also capture military co-
ordination necessary to an operation to assist in decision-making (Barabasi 2016, sec.1.5).
Network analysis provides a discipline shared by many different professional fields. Bi-
ologists and intelligence analysts alike often characterize their system, extract information
from potentially incomplete data, and develop an understanding of their system through
analysis (Barabasi 2016, sec.1.4).

The initial stages of any network analysis includes categorization by class according to
shared characteristics Newman (2010, p.13). This is known as classification. From an
accurate classification, similar methods of analysis can be applied to networks belonging in
the same class.

The rise of accessible real-world data creates a growing interest in effective methods for
accurate network classification, especially for networks with incomplete information. The
principle challenge of analyzing real-world observed networks is its propensity to contain
dubious or incomplete data. For example, criminal networks are "inevitably incomplete"
given their elusive and dynamic operational nature (Sparrow 1991). Illicit groups might
propagate false information to conceal true intentions. Even naturally occurring networks
could have elements that are simply unobserved. Also, for some networks, due to their
nature or size, it can be difficult to ascertain when the observed network is considered
complete.

Unfortunately, very little research has been completed to study the effects of incomplete data
on network structure (Sparrow 1991). Most techniques for handling incomplete networks
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involve data imputation, the process of estimating unknown data from the observed data,
which might incur unknown consequences to a network’s true structure and ultimately affect
classification (Little and Rubin 2014, p.20).

An intelligence community’s assessment of enemy organizations requires accurate classi-
fication of the observed network before the intelligence team can develop a strategy for
combating the adversary. Problems are typically time-sensitive; however, gathering this
complete and actionable intelligence is a challenging mission that could span years. An
adversary’s actions are secretive in nature, making it extremely difficult to collect a complete
observation of the network. Crucial information is deliberately concealed. Intentionally
dubious information might create problematic noise or false imputations. Thus, if an ob-
served incomplete network can be classified as-is without delay, the network can be properly
analyzed for a strategy to be devised and acted upon earlier.

With a method to accurately classify an incomplete network, techniques of imputation can
be reserved for post-classification. This allows for the estimation to be tailored accordingly
by network class in an effort to maintain the network’s true structure. These techniques
could provide the intelligence team with a reasonable evaluation of an enemy’s prospective
associations or activities.

A method for classifying incomplete networks has a wide range of potential applications,
from social network analysis, to epidemiology, and political campaigning. Incomplete
network classification without imputation creates the possibility for new approaches to
network analysis.

1.2 Objective
In this research, we consider amethod for classification of incomplete networks. We examine
the effects of training the classification model with complete and incomplete information.
Observed network data and their network features are classified into technological, social,
information, and biological categories using supervised learningmethods. This comparative
analysis contributes to a better understanding of network characteristics for classification.

2



1.3 Structure
This thesis is organized as follows. Chapter 2 reviews relevant literature of incomplete
networks. Chapter 3 describes the network data used, the data preparation process, and
the model. Chapter 4 presents the results and deductions from our analysis. Chapter 5
summarizes key findings and recommends areas for continuing research.

3
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CHAPTER 2:
Background

This chapter begins by describing frequently studied networks, separating them into four
common classes: technological, social, information, and biological networks. Next, Section
2.2 reviews current literature for network classification and incomplete network studies that
we build upon in our own study. Section 2.3 of this chapter provides basic definitions of
the terminology used in this thesis.

2.1 General Network Classes
Networks can be used to model a variety of systems. Classifying them into distinguished
categories allows for treating networks in a category with common methods of analysis.
In this study, we follow the categorization of networks by Newman (2010, p.13) into four
general classes.

2.1.1 Technological Networks
Technological networks are used to model physical infrastructure systems fundamental to
modern society (Newman 2010, p.13). The Internet, as a global network of connections
between devices, transportation networks, power grids, telephone and delivery networks, are
included in this category, though they are not all are examined in this study. Technological
networks, for example, can have nodes representing airports and the edges representing
connections between those airports.

2.1.2 Social Networks
Social networks model people or groups in some form of social interaction connecting
them. In popular terms, social networks commonly refer to online network systems such as
Facebook or LinkedIn (Barabasi 2016, sec.1.3). However, the study of social networks also
includes email interaction, professional collaboration, and familial ancestry (Newman 2010,
p.30). For social networks, nodes represent individuals, and edges are their connections.
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2.1.3 Information Networks
Information networks represent shared data connections. Closely resembling social net-
works and some technological networks, information networks actually represent the content
occurring over those other networks. Examples include information flow over the World
Wide Web, citations, recommendations, and information distribution in the form of sharing
others’ posts (Newman 2010, p.51). Information networks, for example, can have nodes
representing movies and edges representing related recommendations.

2.1.4 Biological Networks
Biological networks are interactions between biological elements (Newman 2010, p.64).
Common types of biological networks are used to represent biochemical interactions, neu-
rological systems, and relationships in an ecosystem. Biological networks, for example,
can have nodes representing genes and edges representing their interactions.

2.2 Literature Review
Our current "era of big data" is emerging from an increased ability to collect and share data.
(Murphy 2012, p.1). The sharp growth in data size and accessibility requires appropriate
methods for processing and analyzing that big data. A machine learning (ML) approach to
analysis is leveraged in our study.

2.2.1 Machine Learning
ML can be described as a method capable of automated pattern detection to make a
prediction or decision under conditions of uncertainty (Murphy 2012, p.1). If leveraged
properly, the machine will be able to discover and learn from nuanced patterns undetected
by human analysis. Two types of ML are generally used, supervised and unsupervised, also
referred to as predictive and descriptive (Murphy 2012, p.2).

The unsupervised (or descriptive) approach is given only inputs with an objective to dis-
cover patterns in the data (Murphy 2012, p.9). "This is sometimes called knowledge
discovery" (Murphy 2012, p.9). Unsupervised approaches have the flexibility to handle less
straightforward problems.
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Supervised learning has become a central method of ML. In the supervised (or predictive
approach), the objective is to learn from analyzing the relationship between inputs and
outputs, given a training set of labeled input and output data (Murphy 2012, p.3). After
learning from the patterns observed, the machine should be able to receive an input whose
output remains unknown andmake a prediction of the output. When outputs are categorical,
this is known as classification (Murphy 2012, p.2). When class labels are greater than two
and mutually exclusive, it is considered a multiclass classification (Murphy 2012, p.3).
For this thesis, the term “classification” refers to a multiclass classification with a singular
output.

This thesis employs a supervised learning approach to analyze and classify incomplete
networks using a classification model. We accomplish this using ensembles of ML trees.

2.2.2 Random Forest
Classification models have accomplished significant improvements with ML methods. One
of the most popular models is decision trees. Decision trees achieve classification estimates
by sorting instances down a tree process. Each step of the tree "specifies a test of some
attribute of the instance, and each branch descending from that [step] corresponds to one of
the possible values for this attribute" (Mitchell 1997, p.53).

"An ensemble of decision trees is called a decision forest" (Alpaydin 2014, p.234). By
combining predictions from many decision trees, the overall forest’s accuracy significantly
improves and reduces variance (Alpaydin 2014, p.235). This is the foundation of the random
forest (RF) model. Repeatedly generating multiple trees to random subsets of the input data
forms the forest. This method was formally introduced by Breiman (2001).

Breiman (2001) discovered the benefits of using a RF model include:

• Accuracy – RF maintains a competitive accuracy rate among decision tree models.
• Robustness – RF is resilient to outliers and noise.
• Reduced Variance – The randomness helps reduce issues of variance.
• Efficiency – RF models can be fast, especially compared to other ensemble tree
models.

• Model Self-Evaluation – RF models can provide their own "internal estimates of
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error, strength, correlation and variable importance" (Breiman 2001).
• Simplicity – RF is a simple model to use.

While RFmodels remain one of the most commonly usedMLmethods, there is no universal
selection for all classification problems (Murphy 2012, p.551). Using a RF classification
model may prove to work well under certain conditions and poorly in others. Some potential
drawbacks to using RF include possible overfitting for datasets with high levels of noise,
results from the black-box style model can be difficult to interpret, and training speeds are
slower with large datasets (Louppe 2014). An understanding of the benefits and drawbacks
to the RF method is necessary when constructing a RF model.

2.2.3 Study of Network Classification
The initial phase of any network analysis begins with classifying the network. Geng et al.
(2012) discusses the following kernel methods popular for network classification.

• RandomWalk – similarity measured by common random walks
• Shortest Path – similarity measured by common shortest paths
• Cyclic Pattern – similarity measured by common cycles
• Subtree – similarity measured by common subtrees
• Graphlet and Subgraph – similarity measured by similar subgraphs or graphlets

Geng et al. (2012) proposed an alternative approach to kernel methods. It is commonly
understood that networks of a class will have similar characteristics in their structure.
Under this assumption, unique network features should be leveraged to classify an unknown
network. Geng et al. (2012) conducted a study of biological network classification based on
attribute vectors generated from global topological and label features. They discovered that
networks from similar classes have similar characteristics, and network characteristics carry
distinctions that can be leveraged in classification algorithms. Geng et al. (2012) found their
feature-based classification models produced similar accuracy rates with less computational
requirements than conventional kernel methods of measuring similarity between networks
based on shared patterns.

Canning et al. (2018) investigated the use of network features for classification of complete
real-world observed networks. Their research found that networks from differing classes do

8



contain distinguishing structural features useful in network classification. Research prior to
this study was mainly focused on classification of only synthetic networks or distinguishing
networks within one specific class type. Canning et al. (2018) included synthetically
generated networks among the real-world networks and discovered their classificationmodel
could identify the synthetic networks from real networks with great confidence. Their
multiclass classification model using RF was successful in classifying both real-world and
synthetic complete networks using only their network features.

These studies of feature-based classification presume complete network information in
their methods. In contrast, we seek to examine a RF model that classifies a network as it is
observed – even while incomplete.

2.2.4 Study of Incomplete Networks
Incomplete data is a reality of analyzing real-world networks. Portions of the observed
data may remain unknown for different reasons such as data obstruction by excessive noise,
non-respondent survey answers, deliberate concealment, or inaccessibility for observation
(Garcia-Laencina et al. 2010). The proper handling of incomplete data is a critical re-
quirement for accurate classification. An inapt approach can cause significant errors in
classification results.

(Garcia-Laencina et al. 2010) discusses the following common techniques for analyzing
incomplete data:

• Exclusion – deletion of incomplete datasets to analyze only completely observed data
• Weighting – modifying design weights to adjust for non-respondent data
• Imputation – an estimation of unobserved data is generated from known data features
• Model-Based – broad methods for modeling and making inferences based on data
distribution or likelihood

Other emerging approaches for handling incomplete data include the use of ML techniques
such as support vector machines (SVM), decision trees, and neural networks (NN) (Garcia-
Laencina et al. 2010). However, when using any of these methods, we must be attentive
to potential incidents of significant bias, added variance, or risks of generalizing estimated
data (Garcia-Laencina et al. 2010).
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Thus, we seek to develop a method for classifying an incomplete network without estima-
tions to complete the network. Once classified, the methods of predicting unknown data
can be customized to consider that network class’s known properties, not just its observed
features.

2.3 Definitions
In this thesis, “graph” and “network” are used interchangeably, making no distinction
between the two. Explicitly, each are defined as follows,

Definition 2.3.1 Graph

A graph is "an ordered pair of disjoint sets (V, E) such that E is a subset of the
set V (2) of unordered pairs of V ... The set V is the set of vertices and E is the
set of edges... An edge (x, y) is said to join the vertices x and y and is denoted
by xy. Thus xy and yx mean exactly the same edge" (Bollobas 1998, p.1-2).

Nodes and edges of a graph can contain additional information, "such as
names or strengths, to capture more details of the system" (Newman 2010,
p.2).

A graph consists of "a set of nodes (vertices) and a set of edges (arcs) whose
elements are pairs of nodes" (Ahuja et al. 1993, p.24).

Definition 2.3.2 Network

A network in its most elementary form is "a collection of points joined together
in pairs" by connections (Newman 2010, p.1). "[It] is a simplified represen-
tation that reduces a system to an abstract structure capturing only the basics
of connection" patterns(Newman 2010, p.1).

"Many practical problems can be represented by graphs. Emphasizing their
application to real-world systems, the term network is sometimes defined to
mean a graph in which attributes (e.g., names) are associated with the nodes
and/or edges" (Graph Theory 2019).
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Networks can be a simplistic means of representing connections, our study focuses on
distinguishing between networks’ basic underlying structures. Thus, network representation
is sufficient.

We consider the following network structure features for analysis and classification in this
thesis,

Definition 2.3.3 Number of Nodes

The number of nodes represents the "number of components" in a network.
(Barabasi 2016, sec.2.2)

Definition 2.3.4 Number of Edges

The number of edges represents the "total number of interactions between the
nodes" of a network. (Barabasi 2016, sec.2.2)

Definition 2.3.5 Average Distance

A network’s average distance can be measured as the average shortest path
between pairs of connected nodes in the network (Barabasi 2016, sec.2.8).

From Newman (2010, p.238), with V as the set of nodes in the network, n as
the number of nodes in the network, and d(s, t) as the shortest distance from s
to t, it is represented mathematically as,

Average Shortest Distance =
∑
s,t∈V

d(s, t)
n(n − 1)

Definition 2.3.6 Degree

The degree of a node is the number of edges attached to it (Ahuja et al. 1993,
p.25).

Definition 2.3.7 Triangles
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A network triangle consists of three nodes, each connected by edges to both of
the other nodes (Newman 2010, p.154).

Definition 2.3.8 Chromatic Number

The number of colors required to color the nodes of a network coloring the in
such a way that no two vertices connected by an edge have the same color is
the chromatic number (Newman 2010, p.113).

Definition 2.3.9 Density

The density of a network (also known as connectance) is the portion of the
possible connections that are actual existing edges in the network (Newman
2010, p.117).

Density =
Numbero f Edges

Numbero f PossibleEdges

Definition 2.3.10 Transitivity

Transitivity is the tendency for two neighbors of a vertex to also be neighbors
of one another and is measured by the fraction of overall existing triangles to
the number of overall possible triangles in the network (Newman 2010, p.191).

Transitivity = 3
Number of Triangles

Number of Possible Triangles

Definition 2.3.11 Degree Assortativity Coefficient

Degree Assortativity Coefficient measures the tendency for nodes of similar
degree values to be connected (Newman 2010, p.219).

Newman (2003) also refers to it as the Pearson correlation coefficient of degree
between pairs of linked nodes.

Definition 2.3.12 Average Clustering Coefficient

12



The clustering coefficient for a node is defined as the fraction of existing
triangles to all possible triangles through that node (Newman 2010, p.298). A
network’s average clustering coefficient is measured as the average clustering
coefficient for all of its nodes.

Node Clustering Coefficient =
Number of Triangles (by Node)

Number of Possible Triangles (by Node)

Newman (2010, p.276) presents adjacency lists as a simple means for storing network data.
In this thesis, we use adjacency lists to store our network data.

Definition 2.3.13 Adjacency List

Connected nodes are known as adjacent nodes (Ahuja et al. 1993, p.34). A
node adjacency list is a common format for the storage of networks. It contains
the set of nodes adjacent to each node in the network.

Adjacency List = A(i) = { j ∈ N |(i, j) ∈ A}

Definition 2.3.14 Degree Centrality

Centrality "quantifies how important [nodes](or edges) are in a networked
system" (Newman 2010, p.8). Degree centrality is centrality measured by the
number of edges connected to a node (Newman 2010, p.159).

Of specific interest is studying important nodes, defined in this thesis to be the most
connected nodes of a network. Newman (2010) asserts degree centrality to be a useful
metric in determining node importance. Sparrow (1991) argues for examining centrality due
to "incompleteness in the criminal databases [being systematic], anything but random." We
focus on studying central nodes to examine the potential concealment of an organization’s
most important elements, as applicable to classifying incomplete criminal and terrorist
networks. Including centrality into our methodology creates a model intelligence analysts
can use for classifying these incomplete illicit networks. The next chapter introduces our
methodology.

13
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CHAPTER 3:
Model and Methodology

This chapter presents our methodology for classifying incomplete data and the network data
selected for this thesis. The last two sections describe the classification model and discuss
the required computational effort.

3.1 Methodology Overview
To examine effects of training a classification model with complete and incomplete infor-
mation, we use the following approach illustrated in Figure 3.1.

Figure 3.1. Overview of Thesis Methodology

Our methodology is comprised of these six steps. In step 1, we obtain real-world
data. In step 2, we generate incomplete data. In step 3, we compute network
structural features. At step 4, we divide network data into training and test sets.
In step 5 we train and test our RF model. Lastly, we analyze the results in step 6.

15



The steps of the method are:

1. Obtain complete real-world network data.
2. From the complete network, remove data to simulate an incomplete network.
3. Compute features for all complete and incomplete networks.
4. Build appropriate training and test sets.
5. Train RF classification model and test prediction.
6. Conduct analysis of results.

3.2 Network Data
In their study of network classification, Canning et al. (2018) found "[complete] synthetic
graphs are trivial to classify as the classification model can predict with near-certainty the
network model used to generate the synthetic graph." Our own preliminary exploration of
incomplete synthetic networks, combined with Chia (2018) thesis findings, confirms similar
results. Thus, this thesis only considers real-world observed networks for our classification
model. We use the Rossi and Ahmed (2015) network repository as our primary data source
for their comprehensive collection of network data.

3.2.1 Real-World Network Data
A sample of observed network data was obtained from the Rossi and Ahmed (2015) net-
work repository. Our thesis examines networks in the following Rossi and Ahmed (2015)
network repository categories: technological, infrastructure, power, road, social, Facebook,
email, web, citation, recommendation, biological, brain, cheminformatics, and ecology. An
exhaustive list of selected data is included in the appendix. For this thesis, we treat the
data from Rossi and Ahmed (2015) network repository as complete networks and distribute
them into the four common technological, social, information, and biological classes as
described in Figure 3.2.
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Figure 3.2. Networks Separated into Four Categories

Each network from the network repository was categorized by Rossi and Ahmed
(2015). Using those categorizations, we group the networks into four general
classes.

3.2.2 Generating Incomplete Data
From complete networks, we simulate incomplete network data by methodically removing
nodes and edges in 5% increments. The general process is depicted in Figure 3.3. This
generation of incomplete network data allows us to capture and study networks at varying
stages of completeness.
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Figure 3.3. Representing Incomplete Networks from Complete Networks

Beginning with a complete network, nodes and/or edges are selected and removed
to simulate an incomplete network. This process is repeated to produce incomplete
networks at differing levels of completeness, from 5% to 95% complete.

Starting with the original network (100% complete), we generate a sequence of incomplete
networks, ranging from 5% to 95% complete. Thus, for a single network we have a range
of representations at differing levels of completeness. For comparison, two techniques are
developed to represent incompleteness, randomly and by degree centrality.

Incompleteness - Random
Two methods of generating incomplete data due to randomness are used.

1. Select nodes at random and remove. Remove all accompanying edges.
2. Select edges at random and remove. Nodes attached to any edge selected for removal

remain in the network.

Incompleteness - Centrality
Two similar methods for generating incomplete data focused on centrality are also used.

1. Calculate degree centrality for each node. Identify the nodewith the greatest centrality
and remove. Remove all accompanying edges.
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2. Calculate degree centrality for each node. Remove edges attached to the central
nodes. Nodes attached to any edge selected for removal remain in the network.

3.2.3 Network Features
In efforts to develop an efficient classification method, simple structural features are chosen
to capture the characteristics of each network. The following features, as defined in Chapter
2, are computed using several algorithms in the Python library NetworkX (Hagberg et al.
2008), for all complete and incomplete networks.

• Number of Nodes
• Number of Edges
• Average Distance
• Minimum Degree
• Maximum Degree
• Average Degree
• Total Triangles
• Maximum Triangles
• Average Triangles
• Chromatic Number
• Density
• Transitivity
• Degree Assortativity Coefficient
• Average Clustering Coefficient

3.3 Model
Our supervised learning model consists of a training set, a test set, and a classifier.

3.3.1 Training Set
Ripley (1996, p.354) describes the training set as “a set of examples used for learning,
that is to fit the parameters of the classifier”. It is a subset of data used for training the
model. For this thesis, two training sets are generated for comparison. The first training set
follows the common method of training only with complete network data. Our approach
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incorporates incomplete network data into the training set. Figures 3.4 and 3.5 illustrate the
two methods. This critical difference of allowing incomplete information into the training
set provides the model with additional data to examine.

Figure 3.4. Common Method for Making Training and Test Sets

The blue denotes the subset of training set data. The green represents the test
set data. In this method, only complete technological, social, information, and
biological network data make up the training set. The test set contains incomplete
networks at varying levels of completeness.
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Figure 3.5. Proposed Method for Making Training and Test Sets

The blue denotes the subset of training set data. The green represents the test
set data. In contrast to the common method, we include a subset of incomplete
technological, social, information, and biological networks in the training set. The
test set contains incomplete networks at varying levels of completeness.

3.3.2 Test Set
A test set is a subset of data reserved for assessing the trained model. Ripley (1996, p.354)
describes the test set as “a set of examples used only to assess the performance of a fully
specified classifier." This subset is not to be used in training the model but should be
representative of the entire dataset. To assess the model’s ability to classify incomplete
networks, we reserve a subset of incomplete network data for the test sets. As depicted by
Figures 3.4 and 3.5 in green, we only include incomplete networks in the test set.

3.3.3 Random Forest Classifier
We use the RandomForest algorithm from the sklearn.ensemble Python module for
predicting network class. The RandomForest algorithm is designed to follow Breiman
(2001) standard RF methods and “fits a number of decision tree classifiers on various sub-
samples of the dataset” (Pedregosa et al. 2011). The sklearn.ensemble Python module
“combines classifiers by averaging their probabilistic prediction, instead of letting each
classifier vote for a single class” after each decision tree of the collective forest is generated
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from a random sample of the training set (Pedregosa et al. 2011). This method leverages
averaging to increase classification accuracy and control potential over-fitting (Pedregosa
et al. 2011).

We choose the RF classification model for its accuracy, simplicity and efficiency. The
sklearn.ensemble is well documented and maintained by experts in ML. We select the
sklearn.ensemble RandomForest algorithm for its quality and ease of use.

3.4 Computational Effort
To process the complete networks from the Rossi and Ahmed (2015) network repository and
create representations of incomplete networks, we use a standing desktop with twenty-four
3-GHz Intel(R) Xeon(R) CPU E5-2687W processors and 65 GB of memory. We process
the complete networks using the following psuedocode.

– import network data
– convert to adjacency list for storage and reduction of data size
– find centrality for simulating centrality-based incomplete data

– simulate incompleteness in 5% increments: 95%, 90%, ...5%

∗ identify node or edge for removal
∗ remove node and/or edge
∗ save remaining network as adjacency list

– calculate features listed in Section 3.2.3 for all networks

The processing time for each network is directly related to its network size. When generating
incomplete networks using our centrality-based rule, the computational effort increases with
the additional measure of each node’s degree centrality. The processing time for simulating
centrality-based incomplete networks directly relates to the overall density of each network.

We execute the RFmodel on a personalMacBookAir with a 1.3 GHz Intel Core i5 processor
and 4GBofmemory. Themodel trainedwith only complete information requires on average
0.03 seconds. Executing the RF model on complete and incomplete information requires
an average of 0.33 seconds to complete. This increase in computational time reflects the
additional time needed to incorporate the incomplete network observations.
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In the next chapter, we implement our algorithms and examine the effects of training the
classification model with complete and incomplete network data. From our results, we
analyze the effectiveness and potential applications for our model.
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CHAPTER 4:
Results and Analysis

This chapter begins with an examination of the network features used in the classification
model. Then, we analyze the model’s classification accuracy. Lastly, Section 4.3 discusses
potential applications for our incomplete network classification model.

4.1 Feature Importance
The 14 network features from Section 3.2.3 are calculated for all networks in order to capture
each of their observed structural characteristics. From the characteristics of training set
networks, the model learns how to recognize other incomplete networks belonging to the
same class. The model’s predictive ability relies on a network feature’s accurate portrayal of
their network’s characteristics. Thus, we conduct an evaluation of these features using the
sklearn feature_importances_ function and Shapley Additive Explanations (SHAP)
values to examine their importance and contribution to the model.

4.1.1 Sklearn Feature Importance
The sklearn feature_importances_ function scores each topological feature by its
mean decrease impurity, where impurity is a measure of how often a network would be
incorrectly classified if it was randomly classified according to the distribution of classes
(Pedregosa et al. 2011). The mean decrease impurity is “defined as the total decrease in
node impurity, weighted by the probability of reaching that node, averaged over all trees of
the ensemble (Pedregosa et al. 2011)." Figure 4.1 displays the features’ importance score.
The number of nodes, density, and assortativity emerge as the three most important features,
however, do not significantly distinguish themselves from the others.
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Figure 4.1. Feature Importance by Mean Decrease Impurity

The ranking of features by mean decrease impurity importance score is intended to
reveal features with the greatest impact to the model. While the number of nodes
and network density have the greatest influence on our model, this ranking shows
that their scores are not significantly greater than any other features’ importance
score. Also, all features have a relatively low importance value. Thus, we conclude
none of the features are independently influential.

4.1.2 Shapley Additive Explanations
Shapley Additive Explanations (SHAP) merge game theory with six different methods for
calculating feature importance (Lundberg and Lee 2017). The SHAP values are calculated
to “represent a feature’s responsibility for a change in the model output” to assist in the
interpretation of a model’s prediction output (Lundberg and Lee 2017).

Figure 4.2 shows the summary of all topological features and their SHAP values. Each
network instance is plotted as a colored circle. Its color corresponds to the value of the
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feature as depicted in the legend. The x-axis characterizes the importance of the feature by
its impact on the model, its SHAP value. This representation of feature importance reveals
more than simply a score of importance. A low number of nodes, a high density, and a
low assortativity have the greatest influence on the predictive model output. Interestingly,
a high average clustering coefficient also impacts the model’s prediction.

Figure 4.2. Feature Importance by SHAP Value

Each network occurrence is plotted in a color corresponding to the value of the
feature. The x-axis characterizes the network feature’s impact on the model. This
representation of feature importance reveals low number of nodes, high density,
and low assortativity have the most influence on our classification model.
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Another method to explore feature importance by SHAP value is seen in in Figure 4.3.
It depicts the average of SHAP values grouped by class type. This representation shows
how each feature might impact the prediction of each class. Overall, the number of nodes,
density, and assortativity emerge as the three most influential features for each class.

Figure 4.3. Feature Importance by SHAP Value

SHAP values are grouped and plotted by class type to show how each feature
might impact the prediction of that class. Class 0 is biological networks. Class
1 is technological networks. Class 2 is social networks. Class 3 is information
networks. The number of nodes, density, and assortativity are the three most
influential features for each class.
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4.1.3 General Behavior of Important Features
The number of nodes, density, and assortativity are identified as the three most influential
features. To examine the general behavior of these three features, we inspect the changes in
those features as the percentage of the known network changes. These changes are examined
by class type.

Figure 4.4 shows the number of nodes in a network is directly related to the amount of
information known about that network for all class types.

Figure 4.4. Average Number of Nodes by Class

The x-axis denotes the number of nodes. The y-axis represents the percentage of
network known. In general, the number of nodes increases directly in proportion
to the amount of network known for all classes.

As Figure 4.5 depicts, density responds differently for each of the class types. For tech-
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nological and information networks, the density remains steady as the amount of known
network information changes. In social networks, the density increases slightly with the
increase in network information. The density in biological networks grows the most directly
with the increase in network information.

Figure 4.5. Average Network Density by Class

The x-axis denotes the network density. Its limits are from 0 to 0.2. The y-axis
represents the percentage of network known. Average network density changes
differently for each class as the known network information changes.

In Figure 4.6 we examine the degree assortativity remaining steady throughout changes
in the amount of network information known. Overall, social and technological networks
maintain a slightly positive assortativity on average. Whereas, biological networks have a
slightly negative average assortativity. Information networks preserve an average neutral
assortativity.
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Figure 4.6. Average Degree Assortativity Coefficient by Class

The x-axis denotes the network density. Its limits are from -1 to 1. The y-axis
represents the percentage of network known. In general, all classes maintain a
steady neutral average degree assortativity coefficient as the amount of known
network changes.

These observations confirm the limited influence any one of features has on predicting
network class. As the network importance measures indicate, none of the features dis-
tinguish themselves as predominantly significant. With the complex subtleties and inter-
dependencies of the features, this task of incomplete network classification is best suited
for a ML method. This also validates our selection of a RF model.

4.2 Random Forest Classification Accuracy
When considering the accuracy of RF classification techniques, we consider several cases,
defined by the data used for training the model.
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4.2.1 Trained on Only Complete Information
Figure 4.7 represents the classification accuracy achieved by the commonmethod RFmodel
trained by only complete network information. Beginning at 5% of the network known, the
model has a classification rate of only 26%. Logically, as additional network information
becomes known, the classification accuracy gradually increases. Of note, 90% of the
network must be known to secure a classification accuracy greater than 80%. When all
100% of the network information is known, the model achieves near-certain classification
accuracy.

Figure 4.7. Classification Accuracy - Trained on Complete Only

As the amount of network information grows, the classification accuracy increases.
Still, the common method of training by only complete information requires 90%
of the network to achieve a classification accuracy above 80%.

4.2.2 Trained on Complete and Incomplete Information
Figure 4.8 represents the classification accuracy achieved by our RF model trained by both
complete and incomplete network information. There is a sharp classification accuracy
increase from 5% to 25% of the network known. From 25% and greater, the accuracy
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steadily increases with the amount of network known. The lowest classification rate begins
at 57% accuracy with merely 5% of the network known. At 25% of the network, we reach
78% classification accuracy. When all 100% of the network information is known, our
model also achieves near-certain classification accuracy.

Figure 4.8. Classification Accuracy - Trained on Complete and Incomplete

Our method of training with both complete and incomplete information achieves
improves classification rates at all stages of network incompleteness. A minimum
of 35% of the network reaches a classification accuracy over 80%.

4.2.3 Comparison of Both Random Forest Training Methods
We plot both RF model results together for a comparative analysis; Figure 4.9 depicts
the classification accuracy for the two methods. At no point does the common method
of training on only complete network data match the performance of our method which
trains on both complete and incomplete data. To achieve an 80% accuracy, only 35% of
the network information is necessary using a classification model trained on both complete
and incomplete network information. Whereas, a model trained on only complete network
information requires a minimum of 90% of the network information to be known. The stark
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difference between the twomethods demonstrates the necessity of incorporating incomplete
networks into the classification model training set.

Figure 4.9. Classification Accuracy - Training Method Comparison

The difference between the two methods’ accuracy rates emphasizes the benefits of
training our RF classification model with both complete and incomplete informa-
tion. To achieve an 80% classification accuracy, the common method of training
on only complete data needs at least 90% of the network, while our method of
training on complete and incomplete data only needs to know 35% of the network.

4.2.4 Classification by Network Category
To explore the potential for classification into more than four general classes, we also
examine the performance of our model in predicting classification into 14 different network
categories. The categories are technological, infrastructure, power, road, social, Facebook,
email, web, citation, recommendation, biological, brain, cheminformatics, and ecology. We
maintain the classification categories of each network as defined by the data source, Rossi
and Ahmed (2015) network repository, for this test.

Figure 4.10 reveals a similarly trending, though slightly lower, accuracy compared to the
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four-class (technological, social, information and biological) classification. Classifying
network information into 14 classes should be more difficult than into only four classes.
However, our classification model trained with complete and incomplete information re-
mains capable of classifying the networks at a similar accuracy rate. This result confirms
the robustness of our methodology.

Figure 4.10. Classification Accuracy - Class vs Category

When expanding the classification to 14 network categories, our model is still
capable of achieving accuracy rates comparable to the four-class classification. To
achieve an 80% accuracy rate, only 45% of the network information is required.

4.3 Potential Direct Applications
The problem of incomplete information and need for classifying incomplete networks exists
in multiple disciplines. For the Department of Defense (DoD) and the military, application
in the intelligence community is most apparent. As intelligence about a network is collected,
our classification method can be applied to classify the incomplete network without delay.
An accurate classification prediction allows for action to be taken on limited information
sooner. This classification aids intelligence analysts in their follow-on analysis of the
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network and contributes to the strategies of network dismantlement or influence, as the
mission requires.

A network’s classification helps determine how best to organize follow-on efforts to collect
additional network information. With the network class known, principles of that class
can aid in the prediction of future network connections or estimate the potential network
structure development. This predictive ability helps intelligence analysts know “where
to look” for additional network structure. Subsequently, political campaigning strategies,
marketing tactics, and epidemiology studies can similarly benefit from this predictive growth
analysis.

An example of another application in non-military disciplines includes epidemiology. The
spread of a newly formed or mutated disease can be initially tracked and represented as a
network. Using information about previously studied epidemics, the new disease network,
while only partially known, can be assigned a class prediction that could aid medical
professionals in their initial strategy for treatment and containment.

In the final chapter, we summarize our results and present potential areas for continuing
analysis and future work.
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CHAPTER 5:
Conclusion

This chapter summarizes our findings and analysis. Then, we introduce potential areas for
continued future work.

5.1 Summary
In this thesis, we consider a method for classification of incomplete networks that includes
incomplete network information in the training set. From real-world complete network in-
formation, we represent incomplete networks to allow the model to learn from the structural
features of an incomplete network. We compare our method to the standard classification
model that uses only complete network information in the training set.

Our results strongly indicate the need to include incomplete network representations in
training the classification model. Incorporating incomplete networks at various stages of
completeness allow the machine to examine and learn the nuances of incomplete networks.
By allowing the machine to study incomplete network structural features, it has an improved
ability to recognize and classify other incomplete networks. The RF Classification model
requires minimal computational effort and can accomplish an efficient classification. We
also confirm these simple, easily calculated network features are sufficient to classify an
incomplete network.

5.2 Future Work
This thesis establishes a foundation for the continued study of incomplete networks. Our
method of incomplete network classification provides preliminary insight into the benefits
of incorporating incomplete network representation into training the model itself. However,
the incomplete networks in our study are networks rendered incomplete due to only random
or centrality-based reasons. Further exploration should be performed to consider other
methods of representing incomplete networks to closely resemble realistic cases of incom-
plete information. Also, the networks we examine are limited to static observed networks
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The expansion of study to include dynamic networks is recommended. Also, methods of
accurately classifying sub-portions of a too-large network ought to be considered.

Additionally, whilst our research confirms the advantages of a standard supervised learning
method in classifying incomplete networks, a deep learning approach ought to be considered
to harness its capability and flexibility to process larger amounts of raw data through its
incremental layered learning (LeCun et al. 2015). With the growth of accessible real-
world data, large amounts of information will be available to train classification models.
Though potentially time consuming to train, a deep learning method should have a faster
classification speed and increased accuracy, especially as the known training set grows
(LeCun et al. 2015).

Presently, the application of this classification method for a Department of Defense (DoD)
Unmanned Autonomous Vehicle (UAV) network control project is being explored in a
joint effort between the Operations Analysis (OA), Mechanical and Aerospace Engineering
(MAE), and Computer Science (CS) Departments at the Naval Postgraduate School (NPS).
The objective will be to use our classificationmodel for quickly identifying when a degraded
UAV network can no longer be classified as an operational mobile communication network.
While a UAV network carries the features of a robust communication network, established
principles, such as connectivity measures, can be applied in the tactical employment of the
UAV network. The intent for this future study includes an incorporation of our classification
model with an optimization model to rapidly predict and recommend specific vehicle tasks
to sustain a robustly connected UAV network.

Combined with the foundation established in this study, these future research efforts allow
for an enhanced understanding of incomplete networks and how to classify them. Efforts to
incorporate this classification model in real applications is necessary for testing the model’s
practical implementation.
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APPENDIX: Network Datasets

The primary data source for this thesis is from the Rossi and Ahmed (2015) network 
repository. The specific network datasets we use are listed in this appendix.

Technological Networks
Infrastructure Power Road Technological
inf-euroroad power-494-bus road-chesapeake tech-as-caida2007
inf-openflights power-662-bus road-euroroad tech-internet-as
inf-power power-685-bus road-minnesota tech-p2p-gnutella
inf-USAir97 power-1138-bus tech-pgp

power-bcspwr09 tech-routers-rf
power-bcspwr10 tech-WHOIS
power-eris1176
power-US-Grid

Social Networks
Social Facebook Email
soc-advogato socfb-Caltech36 email-dnc-corecipient
soc-ANU-residence socfb-Haverford76 email-univ
soc-dolphins socfb-nips-ego email-enron-only
soc-firm-hi-tech socfb-Oberlin44
soc-hamsterster socfb-Reed98
soc-karate socfb-Simmons81
soc-physicians socfb-Smith60
soc-tribes socfb-Swarthmore42
soc-wiki-Vote socfb-USFCA72

socfb-Wellesley22
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Information Networks
Web Collaboration Recommendation
web-edu ca-CondMat rec-amazon
web-EPA ca-CSphd rec-movielens-tag-movies-10m
web-indochina ca-Erdos992 rec-movielens-user-movies-10m
web-polblogs-2004 ca-GrQc rec-yelp-user-business
web-spam ca-netscience
web-webbase-2001 ca-sandi_auths

Biological Networks
Biological Brain Cheminformatics Ecology
bio-CE-GN bn-cat-mixed-

species_brain_1
ENZYMES_g1 eco-everglades

bio-CE-GT bn-fly-
drosophila_medulla_1

ENZYMES_g10 eco-florida

bio-CE-HT bn-macaque-
rhesus_brain_1

ENZYMES_g13 eco-foodweb-
baydry

bio-CE-LC bn-macaque-
rhesus_brain_2

ENZYMES_g14 eco-foodweb-
baywet

bio-celegans-dir bn-macaque-
rhesus_cerebral-cortex_1

ENZYMES_g15 eco-mangwet

bio-diseasome bn-macaque-
rhesus_interareal-cortical-
network_2

ENZYMES_g16 eco-stmarks

bio-dmela bn-mouse_brain_1 ENZYMES_g18
bio-WormNet-v3-
benchmark

bn-mouse_visual-cortex_1 ENZYMES_g101

bio-yeast-protein-
inter

bn-mouse_visual-cortex_2 ENZYMES_g102

bio-yeast bn-mouse-
kasthuri_graph_v4

ENZYMES_g103
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Naval Postgraduate School
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